կենսաբանություն


Այսօր մենք Ընկեր Անուշի հետ ուղեվորվել էին Կանաչ Դրախտ, մենք ծանոթացանք մի քանի բույսերի հետ` Խոլորձ, երջանկության բամբուկ, անթորիում-տղամարդկու երջանկություն, սպացիֆիլյու-կանացի երջանկությունմարանտա եռագույն և այլն: Գնեցինք ծաղիկներ, զբոսնեցին ամբողջ սրահով մեկ և մեզ պատմեցին ծաղիկների մասին: Լավ ժամանակ անցկացրեցին և սովորեցին ծաղիկների մասին:

 

 

1. Ինչ գիտություն է գենետիկան?

2. Ով առաջինը ուսումնասիրեց հատկանիշների ժառանգման օրինաչափությունները?

3. Պարզաբանել <<ժառանգություն>> և <<փոփոխականություն>> հասկացողությունները?

4. Ինչ է գենը, և որոնք են ալելային գեները?

5. Պարզաբանել <<գենոտիպ>> և <<ֆենոտիպ>> հասկացողությունները?

 

1. Գենետիկական գիտություն է օրգանիզմներում հատկանիշների ժառանգման օրինաչափությունների մասին: Այն ուսումնասիրում է ժառանգականության և փոփոխականության օրենքները:

2. Գենետիկայի հիմնադիրը չեխ գիտնական Գրեգոր Մենդելն է, որը 19-րդ դարի վաթսունական թվականներին առաջինը մշակեց գենետիկական հետազոտությունների մեթոդները և տվեց հատկանիշների ժառանգման հիմնական օրինաչափությունները:

3. Ժառանգականություն ասելով հասկանում ենք ծնողական օրգանիզմների իրենց հատկանիշները և զարգացման առանձնահատկություններըհաջորդ սերնդին փոխանցելու հատկությունը: 

4. Քրոմոսոմների հապլոիդ հավաքում, որը բնորոշ է սեռական բջիջներին, միայն մեկ գեն է պատասխանատու տվյալ հատկանիշի դրսևորման համար, իսկ մնացած սոմատիկ բջիջներում առկա քրոմոսոմների դիպլոիդ հավաքում` երկու գեն: Այն գեները գտնվում են հոմոլոգ քրոմոսոմների միևնույն լոկսուսներում և կոչվում են Ալելային գեներ կամ Ալելներ:

5. Յուրաքանչյուր օրգանիզմի բոլոր գեների ամբողջությունը կոչվում է Գենոտիպ: Սակայն գենոտիպը գեների մեխանիկական գումար չէ, այլ միմյանց հանդեպ փոխներգործող գեների ամբողջություն: Միևնույն տեսակին պատկանող բոլոր օրգանիզմներում յուրաքանչյուր գեն գտնվում է որոշակի քրոմոսոմի միևնույն տեղում կամ լոկուսում:

Օրգանիզմների բոլոր հատկանիշների ամբողջությունը կոչվում է Ֆենոտիպ: Այն իր մեջ ներառում է ինչպես արտաքին, տեսանելի հատկանիշների (մաշկի կամ մազերի գույնը, քթի կամ ականջի ձևը, ծաղիկների գույները և այլն), այնպես էլ ներքին կենսաքիմիական (սպիտակուցների կառուցվածքը, ֆերմետների ակտիվությունը, արյան մեջ հորմոնների քանակը և այլն), հյուսվածքաբանական (բջիջների ձևը և չափերը, հյուսվածքների և օրգանների կազմությունը), կազմաբանական (մարմնի կառուցվածքը, օրգանիզմների փոծադարձ դիրքը) հատկանիշների ամբողջությունը:

 

 

 

·  
Սպիտակուցի կառուցվածքը և ֆունկցիաները

·  Սպիտակուցների բնափոխում

·  Ածխաջրերի կառուցվածքը և ֆունկցիաները

·  ԴՆԹ և ՌՆԹ կառուցվածքը և ֆունկցիաները

·  Օրգանական և անօրգանական նյութերջրի կառուցվածքային առանձնահատկությունները

 

Սպիտակուցները (պրոտեիններ) բարձրամոլեկուլային բնական օրգանական միացություններ են: Սպիտակուցների մոլեկուլները պարունակում են ածխածին, ջրածին, ազոտ, թթվածին և ծծումբ, որոշ տեսակներ՝ նաև ֆոսֆոր: Սպիտակուցները a - ամինաթթվային օղակներից կազմված շղթաներ են և կազմում են բջիջների չոր զանգվածի 50%-ից ավելին: Լինելով կենդանի օրգանիզմների կենսագործունեության արդյունք (սինթեզվում են կենդանի բջիջների կողմից)՝ սպիտակուցներն ապահովում են նրանց գոյության, զարգացման, հասունացման և սերնդային նմանակի վերարտադրման հնարավորությունները: Սպիտակուցների հատկությունները պայմանավորված են նրանց մեջ ամինաթթուների հաջորդականությամբ: 

Օրգանիզմում սպիտակուցների դերը շատ տարատեսակ է: Յուրաքանչյուր սպիտակուց ունի յուրահատուկ ֆիզիոլոգիական գործառույթներ: Կառուցվածքային սպիտակուցները մասնակցում են օրգանիզմի տարբեր կառուցվածքների գոյացմանը: Բջիջների թաղանթները, ներբջջային գոյացությունները, նյարդային ցողունների թաղանթները բաղկացած են հատուկ չլուծվող սպիտակուցներից, որոնք բազմաշաքարների և ճարպերի հետ առաջացնում են բարդ միացություններ: Էլաստին սպիտակուցն արյունատար անոթների բաղադրիչներից է: Մաշկը, ջլերը, կապանները, աճառները, ոսկրերը պարունակում են կոլագեն սպիտակուցը: Կերատինները մազերի, եղունգների, փետուրների, եղջերային գոյացությունների հիմնական կառուցվածքային միավորներն են:

Սպիտակուցային հորմոնները մասնակցում են օրգանիզմի աճին ու բազմացմանը: Հատուկ լուսազգայուն սպիտակուցի՝ ռոդոպսինի շնորհիվ աչքի ցանցաթաղանթի վրա առաջանում է դիտվող առարկայի պատկերը: Մկանները կծկվում ու թուլանում են միոզին և ակտին սպիտակուցների շնորհիվ: Այս սպիտակուցներով է պայմանավորված կենդանիների շարժվելու ունակությունը: Որոշ կենդանիների, օրինակ` օձերի, միջատների, և բույսերի թույները նույնպես սպիտակուցներ են: Առանձին սպիտակուցներ սննդանյութ են (կուտակվում են ձվի սպիտակուցային թաղանթում և բույսերի սերմերում): Սպիտակուցների կարևոր խումբ են ֆերմենտները: Օրգանիզմում բոլոր քիմիական շարժընթացներն իրականանում են դրանց մասնակցությամբ, առանց ֆերմենտների օրգանիզմում անհնարին են մարսողությունը, թթվածնի յուրացումը, նյութերի փոխանակությունը, էներգիայի կուտակումը, արյան մակարդումը և այլն: Որոշ սպիտակուցներ ունեն փոխադրող գործառույթներ. էրիթրոցիտներում պարունակվող հեմոգլոբինը թթվածինը թոքերից փոխադրում է դեպի հյուսվածքներ և օրգաններ, իսկ այնտեղից` ածխաթթվական գազը դեպի թոքեր, որտեղից էլ արտաշնչման ժամանակ այն դուրս է գալիս օրգանիզմից: Սպիտակուցներն ունեն նաև պաշտպանական գործառույթներ: Երբ արյան մեջ ախտածին բակտերիաներ են թափանցում, օրգանիզմում առաջանում են հակամարմիններ՝ իմունոգլոբուլիններ: Այս սպիտակուցները չեզոքացնում են ախտածին միկրոօրգանիզմների կենսագործունեության արգասիքները: Պաշտպանական գործառույթներից է նաև արյան մակարդումը: Արյան պլազմայում լուծված անգույն ֆիբրինոգեն սպիտակուցն արյունատար անոթի վնասված տեղում արագ պոլիմերվում է՝ վերածվելով ֆիբրինի սպիտակ թելիկների:

Բոլոր սպիտակուցները (լուծվողներ և չլուծվողներ, կենսաբանորեն ակտիվներ և թունավորներ), անկախ իրենց բազմազանությունից և գործառույթների տարբերությունից, բաղկացած են ամինաթթուներից, որոնք քիմիական (պեպտիդային) կապերով միացած գծային պոլիմերներ են:

Միևնույն ամինաթթվային կազմով, սակայն ամինաթթվային մնացորդների տարբեր հաջորդականությամբ 2 սպիտակուցներ օժտված են տարբեր քիմիական և կենսաբանական հատկություններով:

Սպիտակուցներում պոլիպեպտիդային շղթաները սովորաբար ունեն պարուրաձև տարածական կառուցվածք: Պարույրի առանձին գալարներն իրար միացած են ջրածնային կապով: Տարբերում են սպիտակուցի մոլեկուլի առաջնային, երկրորդային, երրորդային և չորրորդային կառուցվածքներ:

Սպիտակուցի մոլեկուլում ամինաթթվային մնացորդների հերթականությունը կոչվում է առաջնային կառուցվածք, իսկ ներմոլեկուլային կարգավորվածությունը՝ երկրորդային: Երրորդայինը պոլիպեպտիդային շղթաների տարածական կոնֆիգուրացիան է՝ պոլիպեպտիդային շղթան ամբողջությամբ «ծրարվում» և սևեռվում է ամինաթթուների կողմնային խմբերի փոխազդեցությունների շնորհիվ: Երբեմն որոշ սպիտակուցների մի քանի մոլեկուլներ միավորվում են 1 ընդհանուր՝ չորրորդային կառուցվածքի մեջ: Բարձր ջերմաստիճանի, թթուների, հիմքերի, ծանր մետաղների ազդեցությունից սպիտակուցները ենթարկվում են կառուցվածքային մեծ փոփոխությունների՝ բնազրկման (դենատուրացում), և կորցնում են կենսաբանական ակտիվությունը: Տարբերում են պարզ սպիտակուցներ կամ պրոտեիններ՝ կազմված միայն ամինաթթվային մնացորդներից (ալբումին, գլոբուլին, պրոլամին, գլուտելին, պրոտամին, հիստոն և այլն), և բարդ սպիտակուցներ կամ պրոտեիդներ, որոնց բաղադրության մեջ կան նաև այլ միացություններ (օրինակ՝ հեմոգլոբին, նուկլեոպրոտեիդ, միոգլոբին, ցիտոքրոմ և այլն):

Սպիտակուցները սննդի օրաբաժնի հիմնական կառուցվածքային մասն են: Սննդի միջոցով օրգանիզմ անցած սպիտակուցները յուրացվում են մարսողական հյութերում պարունակվող ֆերմենտների ազդեցությամբ: Սննդի սպիտակուցները ճեղքվում են մինչև ամինաթթուներ, որոնք աղիներից անցնում են արյան մեջ: Սննդի սպիտակուցների քայքայումից առաջացած ամինաթթուներից օրգանիզմը սինթեզում է իրեն անհրաժեշտ կառուցվածքային, ֆերմենտային, կծկողական և այլ սպիտակուցներ:

Հիվանդությունների ժամանակ մեծանում է անփոխարինելի (օրգանիզմի կողմից չսինթեզվող) ամինաթթուների` աղիներ ներթափանցելու և դրանց ներծծվելու միջև ընկած ժամանակը՝ հանգեցնելով հյուսվածքներում սպիտակուցային փոխանակության ու սինթեզի խանգարման:

Օրգանիզմում սպիտակուցների պաշարի սպառման առավել վաղ ցուցանիշ է մեզում միզանյութի քանակի նվազումը (բնականոն վիճակում՝ օրական 20–35 գ):

 

 

Ռիբոնուկլեինաթթու, (ՌՆԹ), բոլոր կենդանի օրգանիզմներում պարունակվող երեք հիմնական մակրոմոլեկուլներից մեկը (մյուս երկուսը ԴՆԹ-ն և սպիտակուցներն են)։

Այնպես ինչպես ԴՆԹ-ն, ՌՆԹ-ն նույնպես կազմված է նուկլեոտիդների շղթայից։[1]Յուրաքանչյուր նուկլեոտիդ կազմված է ազոտային հիմքից, միաշաքարից (ռիբոզ) ևֆոսֆատային խմբից։ Նուկլեոտիդների հաջորդականության շնորհիվ ՌՆԹ-ն կարողանում է կոդավորել գենետիկական ինֆորմացիան։ Բոլորը բջջային օրգանիզմները օգրագործում են մՌՆԹ-ն սպիտակուցների սինթեզը ծրագրավորելու համար։

Բջջային ՌՆԹ առաջանում է տրանսկրիպցիայի արդյունքում, որը ԴՆԹ-ի կաղապարի հիման վրա իրականացվող ՌՆԹ-ի ֆերմենտատիվ սինթեզն է։ Այս գործընթացն իրականանում է հատուկ ֆերմենտների ՌՆԹ-պոլիմերաների միջոցով։ Տրանսկրիպցիայի արդյունքում առաջացած ՌՆԹ-ները հետագայում մասնակցում են սպիտակուցի կենսասինթեզին, որն իրականացնում են ռիբոսոմները։Տրանսկրիպցիայից հետո մյուս ՌՆԹ-ները ենթարկվում են քիմիական ձևափոխությունների և կախված ՌՆԹ-ի տեսակից առաջացնում երկրորդային և երրորդային կառուցվածքներ։

Միաշղթա ՌՆԹ-ները բնութագրվում են տարածական կառուցվածքներով, որտեղ շղթայի նույն նուկլեոտիդային հաջորդականությունները կապված են միմյանց հետ։ Որոշ բարձրակառուցվածքային ՌՆԹ-ներ, ինչպիսին օրինակ փ-ՌՆԹ-ներն են, մասնակցում են սպիտակուցի կենսասինթեզին, ծառայում են կոդոնների ճանաչմանը և համապատասխանամինաթթվի տեղափոխմանը սպիտակուցի սինթեզի վայր, իսկ ռՌՆԹ-ները կազմում են ռիբոսոմի հիմնական կառուցվածքային միավորը։

ՌՆԹ-ի ֆունկցիաները չեն սահմանափակվում միայն տրանսլյացիայում ունեցած նրանց դերով։ Կարճ կորիզային ՌՆԹ-ներն օրինակ մասնակցում են էուկարիոտների իՌՆԹ-ների սփլայսինգին։

ՌՆԹ-ները մտնում են նաև որոշ ֆերմենտների կազմի մեջ (օրինակ՝ թելոմերազներ), որոշ ՌՆԹ-ների մոտ նկատվել է սեփական ֆերմենտատիվ ակտիվություն։

Մի շարք վիրուսների գենոմը կազմված է ՌՆԹ-ից, որը նրանց մոտ ունի այն նշանակությունը, ինչ բարձրակարգ օրգանիզմների մոտ ԴՆԹ-ն։ ՌՆԹ-ի ֆունկցիայի այսպիսի բազմազանության պատճառով, ենթադրվում է, որ նախաբջջային առաջին կրկնապատկման ունակ մոլեկուլները եղել են ՌՆԹ-ները։

 

 

 

 Դեզօքսիռիբոնուկլեինաթթու (ԴՆԹ) (անգլ.՝ Deoxyribonucleic acid (DNA)) բոլոր կենդանի օրգանիզմների և որոշ վիրուսների զարգացման և կենսագործունեության գենետիկական հրահանգները պարունակող նուկլեինաթթու։ Վերջինները, սպիտակուցներն ու ածխաջրերը կյանքի համար անհրաժեշտ երեք կարևորագույն մակրոմոլեկուլներն են։ ԴՆԹ-ի մոլեկուլները սովորաբար կրկնակի պարույրներ են՝ կազմված երկու երկարկենսապոլիմերներից, որոնք էլ իրենց հերթին կազմված են նուկլեոտիդներից։ Յուրաքանչյուր նուկլեոտիդ կազմված է ազոտային հիմքից (գուանին (G, Գ), ադենին (A, Ա), թիմին (T, Թ) և ցիտոզին (C, Ց)), ածխաջրից (դեզօքսիռիբոզ) ևֆոսֆորական թթվի մնացորդներից։ ԴՆԹ-ի մոլեկուլների հիմնական դերը տեղեկատվության երկարատև պահպանումն է։ ԴՆԹ-ի այն հատվածները, որոնք ծածկագրում են սպիտակուցներ, կոչվում են գեներ, իսկ ԴՆԹ-ի չծածկագրող հատվածներն ունեն կառուցվածքային նշանակություն կամ մասնակցում են ծածկագրող հատվածների ակտիվության կարգավորմանը։

ԴՆԹ-ի երկու շղթաներն ընթանում են միմյանց հակառակ ուղղությամբ, որի պատճառով համարվում են հակազուգահեռ դասավորված։ ԴՆԹ-ի որևէ ծայրում շղթաներից մեկի 3 ծայրն է, մյուսի՝ 5 ծայրը։ Դեզօքսիռիբոզին միանում է 4 տեսակի ազոտային հիմքերից որևէ մեկը[1]։ Հենց այս 4 ազոտային հիմքերի հաջորդականությունն էլ ապահովում է ինֆորմացիայի գաղտնագրումը։ Ինֆորմացիան պահպանվում էգենետիկական ծածկագրի միջոցով, իսկ ծածկագիրը հետագայում փոխակերպվում է ամինաթթուներիհաջորդականության։ ԴՆԹ-ի շղթաներից մեկի հիման վրա միաշղթա նուկլեինաթթվի՝ ՌՆԹ-ի սինթեզի պրոցեսն անվանվում է տրանսկրիպցիա, իսկ ի-ՌՆԹ-ի կաղապարի վրա ամինաթթուների հաջորդականության սինթեզը՝տրանսլյացիա։

 

 

Ածխաջրեր, (ածխաջրատներ, շաքարներ), քիմիականմիացություններ՝ կազմված ածխածին, թթվածին ևջրածին տարրերից։ Ածխաջուր են կոչվում, որովհետև միացության մեջ ջրածին և թթվածին տարրերը գտնվում են ջրի մոլեկուլում ունեցած համամասնությամբ՝ Cx(H2O)y։ Կառուցվածքով և քիմիական հատկություններով ունենշաքարների բնույթ։ Սպիտակուցների և ճարպերի հետ միասին ածխաջրերը կարևոր նշանակություն ունենմարդու և կենդանիների օրգանիզմներում ընթացող նյութերի ու էներգիայի փոխանակության շարժընթացում։ Մտնում են բուսական, կենդանական և բակտերային օրգանիզմների կազմության մեջ։ Ածխաջրերը մարդու և կենդանիների սննդի կարևոր բաղադրամաս են և ապահովում են դրանց կենսագործունեության համար անհրաժեշտ էներգիան։ Հասուն մարդու օրգանիզմում էներգիայի կեսից ավելին առաջանում է ածխաջրերից։ Լինելով մարդու և բազմաթիվ կենդանիների սննդի կարևոր բաղադրամասը՝ ապահովում են նրանց կենսագործունեության համար անհրաժեշտ հիմնական էներգիայով։ Հասուն մարդու օրգանիզմում էներգիայի կեսից ավելին առաջանում է ածխաջրերի հաշվին։[1]

 

Օրգանական կոչվում են այն միացությունները, որոնց բաղադրության մեջ մտնում է ածխածին տարրը։ Ածխածնի բնական և սինթետիկ միացությունների մեծամասնությունը օրգանական է և դրանք ուսումնասիրում է օրգանական քիմիան։ Ածխածնի պարզագույն միացությունները՝ օքսիդները, ածխաթթուն ու իր աղերը և որոշ այլ միացություններ ընդունված է դասել անօրգանական միացություններին։[1]

Օրգանական միացությունները, ածխածնից բացի, ավելի հաճախ պարունակում են ջրածին,թթվածին,ազոտ, ավելի քիչ՝ ծծումբ, ֆոսֆոր, հալոգեններ և որոշ մետաղներ (առանձին կամ տարբեր համակցություններով):[2]

Օրգանական քիմիան քիմիայի մեծ և ինքնուրույն բաժին է, որի առարկան հանդիսանում է ածխածնի միացությունների քիմիան և դրանց կառուցվածքը, հատկությունները, ստացման եղանակները, գործնական կիրառման հնարավորությունները։ Գործնականորեն անհնար է որոշակի սահման դնել օրգանական և անօրգանական քիմիաների միջև։

 

 

aabb x Aa Bb

  |          |      |     |      |

ab      AB Ab aB ab

Aa Bb           x         Aa Bb

|       |        |     |          |      |     |      |

AB Ab aB ab         AB Ab aB ab

 

 

<<Մխիթար Սեբաստացի>> կրթահամալիր

 방탄소년단...